A Field Evaluation to Compare the Performance of Personal Exposure Multi-Pollutant Samplers vs. Federal Method Monitors at a Central Ambient Air Monitoring Station in Steubenville, Ohio > Air Quality IV September 22-23, 2004, Arlington, VA S.E. Winter*, R.A. Bilonick, J.A. Withum, V.B. Conrad, R.M. Statnick, S.T. Ebelt, H.H Suh, P. Koutrakis #### History - 1997: USEPA promulgated PM_{2.5} standards - NRC recommendations for PM_{2.5} science - Do measurements at ambient air station reflect personal exposure? - Is it PM_{2.5}, a component, a co-pollutant, or a combo responsible for the observed adverse health effects? - Different sampling equipment and methods #### Criteria for Evaluation - Collocate personal exposure samplers and federal method monitors to compare under equal conditions - Evaluate for PM_{2.5}, components, and co-pollutants - Quantify instrumental and method parameters - Precision - Bias - Limits of Detection - Long term field evaluation > SCAMP #### **SCAMP** - Steubenville Comprehensive Air Monitoring Program - Research Team: CONSOL Energy Inc., Harvard School of Public Health, Franciscan University of Steubenville, Ohio University, St. Vincent College, and Wheeling Jesuit University - Funding: US DOE/NETL, OCDO, EPRI, API, AISI, NMA, NIEHS, EEI, USEPA, CONSOL Energy Inc. #### **SCAMP** - Comprised of (2) interdependent programs - Outdoor ambient - Indoor, personal, and outside the home - Outdoor - FRM PM_{2.5} and Federal Equivalent gas analyzers - Indoor/Personal - Multi-pollutant sampler (developed by the Harvard School of Public Health) #### Outdoor Ambient $PM_{2.5}$ and SO_4 ²⁻ #### Indoor, Personal, and Outside SO_2/NO_2 , Ogawa # 20 weeks of Collocated Sampling # $Methodology - PM_{2.5}$ | Monitor | Filter–Based or
Continuous | Detection | Comments | |-----------------------|---------------------------------|-------------|---| | MP Sampler | Filter – Based,
37 mm Teflon | Gravimetric | •Collects (2) PM _{2.5} filters per MP sampler •Flow rate of 4L/min | | FRM PM _{2.5} | Filter – Based,
47 mm Teflon | Gravimetric | •Federal Reference Method •Flow rate of 16.7L/min | ## Methodology $-O_3$ | Monitor | Filter–Based or
Continuous | Detection | Comments | |-----------------------------|---|-----------------------|---------------------------------------| | MP Sampler | Filter - Based, Glass fiber filter coated with sodium nitrite/potassium carbonate | Ion
Chromatography | • Ogawa Passive Sampling Badge | | O ₃ Gas Analyzer | Continuous | UV | • Federal Automated Equivalent Method | # $Methodology - NO_2$ | Monitor | Filter–Based or
Continuous | Detection | Comments | |------------------------------|--|-----------------------|--| | MP Sampler | Filter - Based, Cellulose filter coated triethanolamine solution | Ion
Chromatography | Ogawa Passive
Sampling Badge Additional
extraction step
with H₂O₂ | | NO ₂ Gas Analyzer | Continuous | Chemiluminescence | • Federal Automated Reference Method | ## $Methodology - SO_2$ | Monitor | Filter–Based or
Continuous | Detection | Comments | |---------------------------------|---|-----------------------|--| | MP Sampler | Filter - Based, Cellulose coated triethanolamine solution | Ion
Chromatography | Ogawa Passive
Sampling Badge Additional
extraction step
with H₂O₂ | | SO ₂ Gas
Analyzer | Continuous | UV
Fluorescence | • Federal Automated Equivalent Method | # Methodology – SO₄²- | Monitor | Filter–Based or
Continuous | Detection | Comments | |-----------------------|--------------------------------------|-----------------------|--| | MP Sampler | Filter – Based,
Fluoropore filter | Ion
Chromatography | • Mini-PEM operates at a flow of 0.8L/min | | FRM PM _{2.5} | Filter – Based,
47 mm Teflon | Ion
Chromatography | Same filter used to determine mass used to determine sulfate Flow rate of 16.7L/min | #### Methodology – Data Analysis - (Zero) Blank correction to gases not to PM_{2.5} or SO₄²⁻ - Limits of Detection were calculated as 3x the SD of blank measurements - Statistical techniques outlined in Jaech's, Statistical Analysis of Measurement Errors were selected to estimate bias and precision - Field evaluation not a controlled lab experiment - Samplers of different designs and different methods - Precision of equipment was unknown, and ? if one was more precise than the other - Use daily pollutant values and not "standards" #### Methodology – Data Analysis - $Y_{ik} = \alpha_i + \beta_i \mu_k + \varepsilon_{ik}$ - Where Y_{ik} is the observed concentration for the k^{th} of n parcels of air and the i^{th} of N samplers - α , β characterize the relative bias of the i^{th} sampler - $\mu_{k is}$ the true concentration of k^{th} air parcel - ε_{ik} is the random error from a Normal distribution with variance σ_i^2 for the i^{th} sampler - Maximum likelihood estimates –Imprecision Variances and Relative Biases - Likelihood Ratio tests used to determine if bias was constant or a function of pollutant concentration ## Results - PM_{2.5} - Precision - 1.9 (MP Sampler) vs. 2.6 μg/m³ (FRM) - Relative Bias - 0.2 μ g/m³ when ambient [] = 10 μ g/m³ - 2.0 μ g/m³ when ambient [] = 20 μ g/m³ - $8.7 \,\mu\text{g/m}^3$ when ambient [] = $50 \,\mu\text{g/m}^3$ - Bias changed with concentration - Limits of Detection - 3.0 (MP Sampler) vs. 1.2 μ g/m³ (FRM) ## Results - O₃ - Precision - 5.7 (MP Sampler) vs. 4.1 ppbv (FAE gas analyzer) - Relative Bias - 0.2 ppbv when ambient [] = 10 ppbv - 2.2 ppbv when ambient [] = 25 ppbv - -4.8 ppbv when ambient [] = 45 ppbv - Bias changed with concentration - Limits of Detection - 12.7,10.7 (MP Sampler) vs. 2.1 ppbv (FAE gas analyzer) ## Results – NO₂ - Precision - 7.0 (MP Sampler) vs. 3.9 ppbv (FAR gas analyzer) - Relative Bias - 2.0 ppbv when ambient [] = 5 ppbv - 2.0 ppbv when ambient [] = 10 ppbv - 2.0 ppbv when ambient [] = 25 ppbv - Bias was constant, did not change with concentration - Limits of Detection - 10.8, 6.1 (MP Sampler) vs. 1.2 ppbv (FAR gas analyzer) ## Results – SO₂ - Precision - 2.5 (MP Sampler) vs. 4.5 ppbv (FAE gas analyzer) - Relative Bias - 6 ppbv when ambient [] = 5 ppbv - 7.9 ppbv when ambient [] = 10 ppbv - 13.4 ppbv when ambient [] = 25 ppbv - 20.7 ppbv when ambient [] = 45 ppbv - Bias changes with concentration - Limits of Detection - 6.4 (MP Sampler) vs. 2.4ppbv (FAE gas analyzer) ## Results – SO₄ ²⁻ - Precision - 0.6 (MP Sampler) vs. 0.9 μ g/m³ (FRM) - Relative Bias - 0.0 μ g/m³ when ambient [] = 6 μ g/m³ - 0.3 µg/m³ when ambient [] = 8 µg/m³ - $0.6 \,\mu\text{g/m}^3$ when ambient [] = $10 \,\mu\text{g/m}^3$ - Bias changed with concentration - Limits of Detection - 0.2 (MP Sampler) vs. 0.1 μ g/m³ (FRM) #### Summary - Particulate Measurements (PM_{2.5}, SO₄ ²⁻) - The MP sampler was comparable to the FRM sampler. - Precision and LOD were approximately equal. - Bias was approximately 10% for $PM_{2.5}$ and 5% for SO_4^{2-} at the average ambient concentration. - Similar sampler design and methodology. #### Summary - Gaseous Measurements (O₃, NO₂, SO₂) - Results were mixed. - For O₃ and NO₂, - Biases were approximately 10% at the average ambient concentration. - However, LODs for the MP sampler were approximately 5 to 10x higher than the federal gas analyzers and 50% or greater of the average ambient concentration. - High blanks for O₃ and NO₂ passive sampling. - For SO₂, - Precision and LOD were comparable. - However there existed a large bias (50% or greater) between the MP sampler and the federal gas analyzer. - Reasons for large SO₂ Bias ? #### Considerations - SO₂ Bias - Ogawa reports good correlation with SO₂ gas analyzer - Start times were not always correlated - LODs were slightly higher but practically the same as a lab evaluation of the MP sampler - Development and Laboratory Performance Evaluation of a Personal Multipollutant Sampler for Simultaneous Measurements of Particulate and Gaseous Pollutant. *Aerosol Science and Technology*, Volume 35, Issue No. 3 2001. - Comparison did not include carbon and elements